1. Овсянников Д.Ю., Бойцова Е.В. Пневмонии у новорожденных детей // Педиатрия. Cons. Medicum. 2021. № 3. P. 214–223.
2. Волянюк Е., Сафина А. Врожденная Пневмония У Недоношенных Новорожденных: Особенности Этиологии, Диагностики И Лечения // Практическая Медицина. 2011. Vol. 5, № 53.
3. Бойцова Е. В., Овсянников Д. Ю., Запевалова Е. Ю. [и др.]. Проблемы и дискуссионные вопросы диагностики пневмоний у новорожденных детей // Педиатрия. Журнал им. Г.Н. Сперанского. 2019. Vol. 98, № 2. P. 178–185.
4. Черняховский О.Б., Абрамова И.В., Полянчикова О.Л. Внутриутробные инфекции у новорожденных , факторы риска // Российский вестник перинатологии и педиатрии. 2009. Vol. 54, № 1. P. 88.
5. Duke T. Neonatal pneumonia in developing countries // Arch. Dis. Child. Fetal Neonatal Ed. 2005. Vol. 90, № 3. P. 211–219.
6. Зубков В.В., Рюмина И.И. Акушерство. Национальное руководство. 2nd-е издани ed. / ed. Г.М.Савельевой, Г.Т.Сухих, В.Н.Серова В.Е.Р. Москва: Геотар-Медиа, 2015. 1025 p.
7. Неонатология. Нац. руководство под ред Н.Н. Володина. Москва: ГЭОТАР-Мед, 2007. 848 p.
8. Hooven T.A., Polin R.A. Pneumonia // Semin. Fetal Neonatal Med. 2017. Vol. 22, № 4. P. 206–213.
9. Банкалари Э.;под редакцией Р. Полина; перевод с англ.; под ред. Д.Ю. Овсянникова. Легкие новорожденных. Москва: Логосфера, 2015. 672 p.
10. Weston E.J. et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005-2008. // Pediatr Infect Dis J. 2011. Vol. 30, № 11. P. 937–941.
11. Puopolo K.M. et al. Estimating the probability of neonatal early-onset infection on the basis of maternal risk factors // Pediatrics. 2011. Vol. 128, № 5.
12. Stoll B.J. et al. Early onset neonatal sepsis: The burden of group B streptococcal and E. coli disease continues // Pediatrics. 2011. Vol. 127, № 5. P. 817–826.
13. Kuhn P. et al. Incidence and distribution of pathogens in early-onset neonatal sepsis in the era of antenatal antibiotics // Paediatr. Perinat. Epidemiol. 2010. Vol. 24, № 5. P. 479–487.
14. Kuzniewicz M.W. et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis // JAMA Pediatr. 2017. Vol. 171, № 4. P. 365–371.
15. Sgro M. et al. Population-based study of early-onset neonatal sepsis in Canada // Paediatr. Child Heal. 2019. Vol. 24, № 2. P. E66–E73.
16. Щеголев А.И., Туманова У.Н., Шувалова М.П., Фролова О.Г. Врожденная пневмония как причина перинатальной смертности в Российской Федерации // Неонатология: новости, мнения, обучение. 2016. Vol. 2, № 12. P. 61–66.
17. Cleveland R.H. A radiologic update on medical diseases of the newborn chest // Pediatr. Radiol. 1995. Vol. 25, № 8. P. 631–637.
18. Lobo L. The neonatal chest // Eur. J. Radiol. 2006. Vol. 60, № 2. P. 152–158.
19. Haney PJ, Bohlman M S.C. Radiographic findings in neonatal pneumonia. // AJR Am J Roentgenol. 1984. Vol. 143, № 1. P. 23–26.
20. Swischuk LE. Respiratory system // Imaging of the newborn, infant, and young child. 4th ed. Baltimore: Williams & Wilkins, 1997. P. 43–47.
21. Funke A. et al. Frequency, natural course, and outcome of neonatal neutropenia // Pediatrics. 2000. Vol. 106, № 1 I. P. 45–51.
22. Ohls R.K. Y.M.C. et al. Hematology, immunology and infection disease: neonatology questions and controversies. Elsiever, 2008. 294 p.
23. Wiedmeier S.E. et al. Platelet reference ranges for neonates, defined using data from over 47000 patients in a multihospital healthcare system // J. Perinatol. 2009. Vol. 29, № 2. P. 130–136.
24. Pontrelli G. et al. Accuracy of serum procalcitonin for the diagnosis of sepsis in neonates and children with systemic inflammatory syndrome: A meta-analysis // BMC Infect. Dis. BMC Infectious Diseases, 2017. Vol. 17, № 1. P. 1–12.
25. Hedlund GL, Griscom NT, Cleveland RH K.D. Practical pediatric imaging: diagnostic radiology of infants and children. // Respiratory system. 3rd ed. / ed. Kirks DR G.N. Philadelphia: Lippincott-Raven, 1998. P. 715–717.
26. Donoqhue V. Radiological Imaging of the Neonatal Chest. 2nd Revise. Springer, 2008. 362 p.
27. Mularoni A. et al. The role of coagulase-negative staphylococci in early onset sepsis in a large European cohort of very low birth weight infants // Pediatr. Infect. Dis. J. 2014. Vol. 33, № 5. P. 121–125.
28. Ofman G., Vasco N., Cantey J.B. Risk of Early-Onset Sepsis following Preterm, Prolonged Rupture of Membranes with or without Chorioamnionitis // Am. J. Perinatol. 2016. Vol. 33, № 4. P. 339–342.
29. Rønnestad A. et al. Septicemia in the first week of life in a Norwegian national cohort of extremely premature infants // Pediatrics. 2005. Vol. 115, № 3.
30. Soraisham A.S. et al. A multicenter study on the clinical outcome of chorioamnionitis in preterm infants // Am. J. Obstet. Gynecol. 2009. Vol. 200, № 4. P. 372.e1-372.e6.
31. Randis T.M., Polin R.A. Early-onset group B Streptococcal sepsis: New recommendations from the Centres for Disease Control and Prevention // Arch. Dis. Child. Fetal Neonatal Ed. 2012. Vol. 97, № 4. P. 291–295.
32. Shane A.L., Sánchez P.J., Stoll B.J. Neonatal sepsis // Lancet. 2017. Vol. 390, № 10104. P. 1770–1780.
33. Dempsey E. et al. Outcome of neonates less than 30 weeks gestation with histologic chorioamnionitis // Am. J. Perinatol. 2005. Vol. 22, № 3. P. 155–159.
34. NG195 N. guidlines. Neonatal infection: antibiotics for prevention and treatment // Neonatal infection: antibiotics for prevention and treatment. 2021. № April.
35. Dior U.P. et al. Very High Intrapartum Fever in Term Pregnancies and Adverse Obstetric and Neonatal Outcomes // Neonatology. 2015. Vol. 109, № 1. P. 62–68.
36. García-Muñoz Rodrigo F., Galán Henríquez G.M., Ospina C.G. Morbidity and mortality among very-low-birth-weight infants born to mothers with clinical chorioamnionitis // Pediatr. Neonatol. 2014. Vol. 55, № 5. P. 381–386.
37. Rodrigo F.G.M. et al. Outcomes of very-low-birth-weight infants exposed to maternal clinical chorioamnionitis: A multicentre study // Neonatology. 2014. Vol. 106, № 3. P. 229–234.
38. Klinger G. et al. Epidemiology and risk factors for early onset sepsis among very-low-birthweight infants // Am. J. Obstet. Gynecol. Mosby, Inc., 2009. Vol. 201, № 1. P. 38.e1-38.e6.
39. Singh M., Deorari A.K. Pneumonias in newborn babies // Indian J Pediatr. 1995. Vol. 62, № 3. P. 293–306.
40. Mårdh PA, Johansson PJ S.N. Intrauterine Lung Infection with Chlamydia Trachomatis in a Premature Infant // Acta Pædiatrica. 1984. Vol. 73, № 4. P. 569–572.
41. Боконбаева С. Д., Нуржанова С. Т. К.А.А. Сравнительный анализ клинического течения врожденных и неонатальных пневмоний // Здоровье матери и ребенка. 2015. Vol. 1. P. 6–10.
42. Hedstrom A.B. et al. Performance of the Silverman Andersen Respiratory Severity Score in predicting PCO2 and respiratory support in newborns: A prospective cohort study // J. Perinatol. Springer US, 2018. Vol. 38, № 5. P. 505–511.
43. Setty S.G., Batra M., Hedstrom A.B. The Silverman Andersen respiratory severity score can be simplified and still predicts increased neonatal respiratory support // Acta Paediatr. Int. J. Paediatr. 2020. Vol. 109, № 6. P. 1273–1275.
44. Sarkar S. et al. A study of the role of multiple site blood cultures in the evaluation of neonatal sepsis // J. Perinatol. 2006. Vol. 26, № 1. P. 18–22.
45. Polin R.A. et al. Management of Neonates with Suspected or Proven Early-Onset Bacterial Sepsis // Pediatrics. 2012. Vol. 129, № 5. P. 1006–1015.
46. Çelik H.T. et al. Efficacy of new leukocyte parameters versus serum C-reactive protein, procalcitonin, and interleukin-6 in the diagnosis of neonatal sepsis // Pediatr. Int. 2016. Vol. 58, № 2. P. 119–125.
47. Hornik CP, Benjamin DK, Becker KC, Benjamin DK Jr, Li J, Clark RH et al. Use of the complete blood cell count in early-onset neonatal sepsis. // Pediatr Infect Dis J. 2012. Vol. 31, № 8. P. 799-802.
48. Murphy K., Weiner J. Use of leukocyte counts in evaluation of early-onset neonatal sepsis // Pediatr. Infect. Dis. J. 2012. Vol. 31, № 1. P. 16–19.
49. Newman T.B. et al. Combining immature and total neutrophil counts to predict early onset sepsis in term and late preterm newborns: Use of the I/T2 // Pediatr. Infect. Dis. J. 2014. Vol. 33, № 8. P. 798–802.
50. Makkar M. et al. Performance evaluation of hematologic scoring system in early diagnosis of neonatal sepsis // J. Clin. Neonatol. 2013. Vol. 2, № 1. P. 25.
51. Saboohi E. et al. Immature to total neutrophil ratio as an early indicator of early neonatal sepsis // Pakistan J. Med. Sci. 2019. Vol. 35, № 1. P. 241–246.
52. Berardi A. et al. Should we give antibiotics to neonates with mild non-progressive symptoms? A comparison of serial clinical observation and the neonatal sepsis risk calculator // Front. Pediatr. 2022. Vol. 10.
53. Hedegaard S.S., Wisborg K., Hvas A.M. Diagnostic utility of biomarkers for neonatal sepsis - a systematic review // Infect. Dis. (Auckl). 2015. Vol. 47, № 3. P. 117–124.
54. Eschborn S., Weitkamp J.H. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis // J. Perinatol. Springer US, 2019. Vol. 39, № 7. P. 893–903.
55. Chaudhuri PK, Ghosh A, Sinha V, Singh BK, Singh M, Lugova H, Ahmad R, Sinha S, Haque M K.S. The Role of C-reactive Protein Estimation in Determining the Duration of Antibiotic Therapy in Neonatal Sepsis. // Cureus. 2022. Vol. 14, № 10. P. e30211.
56. Ahmed E., Rehman A., Asghar Ali M. Validation of serum C-reactive protein for the diagnosis and monitoring of antibiotic therapy in neonatal sepsis // Pakistan J. Med. Sci. 2017. Vol. 33, № 6. P. 1434–1437.
57. Yochpaz S. et al. C-reactive protein in early-onset neonatal sepsis–a cutoff point for CRP value as a predictor of early-onset neonatal sepsis in term and late preterm infants early after birth? // J. Matern. Neonatal Med. Taylor & Francis, 2020. Vol. 0, № 0. P. 1–6.
58. Benitz WE, Han MY, Madan A R.P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. // Pediatrics. 1998. Vol. 102, № 4. P. E41.
59. Hincu M.A. et al. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis // Children. 2020. Vol. 7, № 12.
60. Delanghe J.R., Speeckaert M.M. Translational research and biomarkers in neonatal sepsis // Clin. Chim. Acta. Elsevier B.V., 2015. Vol. 451. P. 46–64.
61. Hofer N. et al. An update on the use of C-reactive protein in early-Onset neonatal sepsis: Current insights and new tasks // Neonatology. 2012. Vol. 102, № 1. P. 25–36.
62. Mjelle AB, Guthe HJT, Reigstad H, Bjørke-Monsen AL M.T. Serum concentrations of C-reactive protein in healthy term-born Norwegian infants 48-72 hours after birth. // Acta Paediatr. 2019. Vol. 108, № 5. P. 849–854.
63. van Maldeghem I, Nusman CM V.D. Soluble CD14 subtype (sCD14-ST) as biomarker in neonatal early-onset sepsis and late-onset sepsis: a systematic review and meta-analysis. // BMC Immunol. BMC Immunology, 2019. Vol. 20, № 1. P. 17.
64. Шарафутдинова Д. Р. , Балашова Е. Н., Сухова Ю. В., Кесслер Ю.А. [и др.]. Диагностическое значение пресепсина как маркера врожденного инфекционного процесса у новорожденных детей // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022. Vol. 21, № 1. P. 56–64.
65. Ruan L. et al. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: A meta-analysis and systematic review // Crit. Care. Critical Care, 2018. Vol. 22, № 1. P. 316.
66. Балашова Е.Н., Шарафутдинова Д.Р., Сухова Ю.В., Кесслер Ю.В., Титова К.Ю., Меньшикова А.А., Киртбая А.Р., Рындин А.Ю., Иванец Т.Ю., Ионов О.В. Д.Д.Н. Диагностическая точность пресепсина , прокальцитонина и С-реактивного белка у новорожденных с ранним неонатальным сепсисом : одноцентровое проспективное исследование // Неонатология: новости, мнения, обучение. 2023. Vol. 11, № 3. P. 10–21.
67. Pammi M. et al. Molecular assays for the diagnosis of sepsis in neonates // Cochrane Database Syst. Rev. 2017. Vol. 2017, № 2.
68. Nissen M.D. Congenital and neonatal pneumonia // Paediatr. Respir. Rev. 2007. Vol. 8, № 3. P. 195–203.
69. Fitzgerald M.J. et al. Early metabolic effects of sepsis in the preterm infant: Lactic acidosis and increased glucose requirement // J. Pediatr. 1992. Vol. 121, № 6. P. 951–955.
70. Di Fiore J.M. et al. Cardiorespiratory events in preterm infants: Interventions and consequences // J. Perinatol. Nature Publishing Group, 2016. Vol. 36, № 4. P. 251–258.
71. Davis A.L. et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock // Critical Care Medicine. 2017. Vol. 45, № 6. 1061–1093 p.
72. Ломако С.В. Методы ранней диагностики нарушений капиллярного кровотока , позволяющие оптимизировать интенсивную терапию врожденной пневмонии Methods of early diagnosis of capillary blood fl ow disturbance , // Репродуктивное здоровье. Восточная Европа. 2018. Vol. 8, № 2. P. 219–227.
73. Anil N. Importance of measuring lactate levels in children with sepsis // Nurs. Child. Young People. 2017. Vol. 29, № 8. P. 26–29.
74. Nadeem M., Clarke A., Dempsey E.M. Day 1 serum lactate values in preterm infants less than 32 weeks gestation // Eur. J. Pediatr. 2010. Vol. 169, № 6. P. 667–670.
75. Goryachko A. et al. The Significance of Indicators of Acid-Base State and Biochemical Blood Analysis in Premature Newborns with Different Body Weight and Congenital Pneumonia in the Neonatal Period // Paediatr. East. Eur. 2022. Vol. 10, № 1. P. 96–109.
76. Зубков В. В., Байбарина Е. Н. , Рюмина И. И. Д.Д.Н. Диагностическая значимость признаков пневмонии у новорожденных детей // Акушерство и гинекология. 2012. Vol. 7. P. 68–73.
77. Володин Н. Н., Дегтярев Д. Н. , Котик И. Е. И.И.С. Клинико-рентгенологические особенности синдрома дыхательных расстройств и пневмоний у глубоко недоношенных детей // Вопросы гинекологии, акушерства и перинатологии. 2003. Vol. 2, № 5–6. P. 16–20.
78. Gao Y.Q. et al. Lung ultrasound completely replaced chest X-ray for diagnosing neonatal lung diseases: a 3-year clinical practice report from a neonatal intensive care unit in China // J. Matern. Neonatal Med. Taylor & Francis, 2022. Vol. 35, № 18. P. 3565–3572.
79. Xin H., Li J., Hu H.Y. Is Lung Ultrasound Useful for Diagnosing Pneumonia in Children?: A Meta-Analysis and Systematic Review // Ultrasound Q. 2018. Vol. 34, № 1. P. 3–10.
80. Corsini I. et al. Lung ultrasound for the differential diagnosis of respiratory distress in neonates // Neonatology. 2019. Vol. 115, № 1. P. 59–67.
81. Liu J. et al. Lung ultrasonography for the diagnosis of severe neonatal pneumonia // Chest. The American College of Chest Physicians, 2014. Vol. 146, № 2. P. 383–388.
82. Chen S.W. et al. Routine application of lung ultrasonography in the neonatal intensive care unit // Med. (United States). 2017. Vol. 96, № 2.
83. Pereda M.A. et al. Lung ultrasound for the diagnosis of pneumonia in children: A meta-analysis // Pediatrics. 2015. Vol. 135, № 4. P. 714–722.
84. Balk D.S. et al. Lung ultrasound compared to chest X-ray for diagnosis of pediatric pneumonia: A meta-analysis // Pediatr. Pulmonol. 2018. Vol. 53, № 8. P. 1130–1139.
85. Singh Y. et al. International evidence-based guidelines on Point of Care Ultrasound ( POCUS ) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care ( ESPNIC ) // Crit Care. Critical Care, 2020. Vol. 24, № 1. P. 1–16.
86. Kurepa D. et al. Neonatal lung ultrasound exam guidelines // J. Perinatol. Nature Publishing Group, 2018. Vol. 38, № 1. P. 11–22.
87. Горячко А. Н., Сукало А. В. И.Е.В. Прогностическая значимость показателей эхокардиографии, ассоциированных с развитием острой сердечной недостаточности у новорожденных с врожденной пневмонией на первой неделе жизни // Репродуктивное здоровье. Восточная Европа. 2022. Vol. 12, № 2. P. 266–280.
88. Gill AB W.A. Echocardiographic assessment of cardiac function in shocked very low birthweight infants [4] // Arch. Dis. Child. 1993. Vol. 61, № 1. P. 17–21.
89. Mutlu M. et al. Adrenal hemorrhage in newborns: A retrospective study // World J. Pediatr. 2011. Vol. 7, № 4. P. 355–357.
90. Рагимова Н.Д. Особенности ультразвукового исследования органов гепато-билиарной системы и селезенки у новорожденных с внутриутробной инфекцией // Научный альманах. 2015. Vol. 6, № 8. P. 129–135.
91. Murase M., Ishida A. Echocardiographic assessment of early circulatory status in preterm infants with suspected intrauterine infection // Arch. Dis. Child. Fetal Neonatal Ed. 2006. Vol. 91, № 2. P. 105–110.
92. Bandyopadhyay T. et al. Correlation of functional echocardiography and clinical parameters in term neonates with shock // J. Neonatal. Perinatal. Med. 2020. Vol. 13, № 2. P. 167–173.
93. Saini S.S., Kumar P., Kumar R.M. Hemodynamic changes in preterm neonates with septic shock: A prospective observational study // Pediatr. Crit. Care Med. 2014. Vol. 15, № 5. P. 443–450.
94. Tomerak R.H. et al. Echocardiogram done early in neonatal sepsis: What does it add? // J. Investig. Med. 2012. Vol. 60, № 4. P. 680–684.
95. Basu S. et al. Cerebral blood flow velocity in early-onset neonatal sepsis and its clinical significance // Eur. J. Pediatr. 2012. Vol. 171, № 6. P. 901–909.
96. Giannattasio A. et al. Neuroimaging Profiles and Neurodevelopmental Outcome in Infants With Congenital Cytomegalovirus Infection // Pediatr. Infect. Dis. J. 2018. Vol. 37, № 10. P. 1028–1033.
97. Çaksen H. et al. Risk and prognostic factors in perinatal hemorrhagic stroke // Ann. Indian Acad. Neurol. 2021. Vol. 24, № 2. P. 227–233.
98. Liakou P. et al. Subcapsular Liver Hematoma—A Life-Threatening Condition in Preterm Neonates—A Case Series and Systematic Review of the Literature // J. Clin. Med. 2022. Vol. 11, № 19. P. 5684.
99. Mon R.A. et al. Diagnostic accuracy of imaging studies in congenital lung malformations // Arch. Dis. Child. Fetal Neonatal Ed. 2019. Vol. 104, № 4. P. F372–F377.
100. Hermelijn S.M. et al. A clinical guideline for structured assessment of CT-imaging in congenital lung abnormalities // Paediatr. Respir. Rev. The Authors, 2021. Vol. 37. P. 80–88.
101. Newman B. et al. Congenital surfactant protein B deficiency - Emphasis on imaging // Pediatr. Radiol. 2001. Vol. 31, № 5. P. 327–331.
102. Khalsi F. et al. Congenital surfactant protein B (SP-B) deficiency: a case report // Pan Afr. Med. J. 2023. Vol. 44. P. 158.
103. Badrawi N. et al. Arrhythmia in the neonatal intensive care unit // Pediatr. Cardiol. 2009. Vol. 30, № 3. P. 325–330.
104. Lucas J.F. et al. Fatal complete atrioventricular block as a complication of bacterial sepsis in a premature newborn // Pediatr. Cardiol. 2005. Vol. 26, № 5. P. 677–679.
105. McMullen S.L. Arrhythmias and Cardiac Bedside Monitoring in the Neonatal Intensive Care Unit // Crit. Care Nurs. Clin. North Am. Elsevier Inc, 2016. Vol. 28, № 3. P. 373–386.
106. Schwartz P.J. et al. Guidelines for the interpretation of the neonatal electrocardiogram: A Task Force of the European Society of Cardiology // Eur. Heart J. 2002. Vol. 23, № 17. P. 1329–1344.
107. Griffin M.P., Moorman J.R. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis // Pediatrics. 2001. Vol. 107, № 1. P. 97–104.
108. Yapicioʇlu H., Özlü F., Sertdemir Y. Are vital signs indicative for bacteremia in newborns? // J. Matern. Neonatal Med. 2015. Vol. 28, № 18. P. 2244–2249.
109. De Mul A, Parvex P, Héneau A, Biran V, Poncet A, Baud O, Saint-Faust M W.-B.A. Urine Output Monitoring for the Diagnosis of Early-Onset Acute Kidney Injury in Very Preterm Infants. // Clin J Am Soc Nephrol. 2022. Vol. 17, № 7. P. 949–956.
110. de Boode W.P. Clinical monitoring of systemic hemodynamics in critically ill newborns // Early Hum. Dev. Elsevier Ltd, 2010. Vol. 86, № 3. P. 137–141.
111. Hofer N., Müller W., Resch B. Neonates presenting with temperature symptoms: Role in the diagnosis of early onset sepsis // Pediatr. Int. 2012. Vol. 54, № 4. P. 486–490.
112. Graves GR R.P. Tachycardia as a sign of early onset neonatal sepsis. // Pediatr Infect Dis. 1984. Vol. 3, № 5. P. 404–406.
113. Korvenranta H., Kero P., Välimäki I. Cardiovascular monitoring in infants with respiratory distress syndrome1 // Neonatology. 1983. Vol. 44, № 3. P. 138–145.
114. Dempsey E.M. et al. Hypotension in Preterm Infants (HIP) randomised trial // Arch. Dis. Child. Fetal Neonatal Ed. 2021. Vol. 106, № 4. P. F398–F403.
115. Pellicer A. et al. Early systemic hypotension and vasopressor support in low birth weight infants: Impact on neurodevelopment // Pediatrics. 2009. Vol. 123, № 5. P. 1369–1376.
116. Pereira S.S. et al. Blood pressure intervention levels in preterm infants: Pilot randomised trial // Arch. Dis. Child. Fetal Neonatal Ed. 2019. Vol. 104, № 3. P. F298–F305.
117. Greenough A. et al. Synchronized mechanical ventilation for respiratory support in newborn infants // Cochrane Database Syst. Rev. 2016. Vol. 2016, № 9.
118. McCarthy L.K., O’Donnell C.P.F. Comparison of rectal and axillary temperature measurements in preterm newborns // Arch. Dis. Child. Fetal Neonatal Ed. 2021. Vol. 106, № 5. P. F509–F513.
119. Gowa M.A. et al. A quasi experimental study to compare thermo-regulator blanket with conventional method (incubator) for temperature regulations in preterm, low birth weight neonates landing at emergency department of a tertiary care paediatric facility // J. Pak. Med. Assoc. 2022. Vol. 72, № 6. P. 1044–1047.
120. Korang SK, Safi S, Nava C, Gordon A, Gupta M, Greisen G, Lausten-Thomsen U J.J. Antibiotic regimens for early-onset neonatal sepsis. // Cochrane Database Syst. Rev. 2021. Vol. 2021, № 5. P. CD013837.
121. Moffett S.M., Kitts H.L., Henderson S.J. Medication therapy for early-onset neonatal sepsis // AACN Adv. Crit. Care. 2016. Vol. 27, № 3. P. 253–258.
122. Stoll B.J. et al. Early-Onset Neonatal Sepsis 2015 to 2017, the Rise of Escherichia coli, and the Need for Novel Prevention Strategies // JAMA Pediatr. 2020. Vol. 174, № 7. P. 1–12.
123. Puopolo KM, Benitz WE Z.T. COMMITTEE ON FETUS AND NEWBORN; COMMITTEE ON INFECTIOUS DISEASES. Management of Neonates Born at ≥35 0/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. // Pediatrics. 2018. Vol. 142, № 6. P. e20182894.
124. Puopolo KM, Benitz WE Z.T. COMMITTEE ON FETUS AND NEWBORN; COMMITTEE ON INFECTIOUS DISEASES. Management of Neonates Born at ≤34 6/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. // Pediatrics. 2018. Vol. 142, № 6. P. e20182896.
125. Шухов В.С., Байбарина Е.Н., Рюмина И.И. З.В.. Антимикробная терапия у детей. Практическое руководство. Москва: ГЭОТАР-Медиа, 2016. 320 p.
126. Craig A.M. et al. Listeriosis in Pregnancy: A Review // Obstet. Gynecol. Surv. 2019. Vol. 74, № 6. P. 362–368.
127. Flannery DD, Puopolo KM. Neonatal Early-Onset Sepsis. // Neoreviews. 2022. Vol. 23, № 11. P. 756–770.
128. Boscarino G. et al. An Overview of Antibiotic Therapy for Early- and Late-Onset Neonatal Sepsis: Current Strategies and Future Prospects // Antibiotics. 2024. Vol. 13, № 3. P. 1–12.
129. Sikias P. et al. Early-onset neonatal sepsis in the Paris area: a population-based surveillance study from 2019 to 2021 // Arch. Dis. Child. Fetal Neonatal Ed. 2023. Vol. 108, № 2. P. 114–120.
130. Fang P. et al. Prevalence of multidrug-resistant pathogens causing neonatal early and late onset sepsis, a retrospective study from the tertiary referral children’s hospital // Infect. Drug Resist. 2023. Vol. 16, № June. P. 4213–4225.
131. Mendoza-Palomar N. et al. Escherichia coli early-onset sepsis: trends over two decades // Eur. J. Pediatr. European Journal of Pediatrics, 2017. Vol. 176, № 9. P. 1227–1234.
132. Ji H. et al. Pathogen Distribution and Antimicrobial Resistance of Early Onset Sepsis in Very Premature Infants: A Real-World Study // Infect. Dis. Ther. Springer Healthcare, 2022. Vol. 11, № 5. P. 1935–1947.
133. Weissman S.J. et al. Emergence of antibiotic resistance-associated clones among Escherichia coli recovered from newborns with early-onset sepsis and meningitis in the United States, 2008-2009 // J. Pediatric Infect. Dis. Soc. 2016. Vol. 5, № 3. P. 269–276.
134. Yu Y., Huang Q., Liu A. Analysis of pathogens, drug resistance, sensitive antibiotic treatment and risk factors of early-onset sepsis in very low birth weight infants. // Am. J. Transl. Res. 2021. Vol. 13, № 11. P. 12939–12948.
135. Srinivasjois RM, Kohan R, Keil AD S.N. Congenital Mycoplasma pneumoniae pneumonia in a neonate. // Pediatr. Infect. Dis. J. 2008. Vol. 27, № 5. P. 474–475.
136. Kimberlin D.W. et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. // J. Pediatr. 2003. Vol. 143, № 1. P. 16–25.
137. Kimberlin D.W. et al. Valganciclovir for symptomatic congenital cytomegalovirus disease // N. Engl. J. Med. 2015. Vol. 372, № 10. P. 933–943.
138. De Rose D.U. et al. Severe herpes virus 6 interstitial pneumonia in an infant with three variants in genes predisposing to lung disease // J. Med. Virol. 2021. Vol. 93, № 8. P. 5182–5187.
139. Langlet C. et al. An uncommon case of disseminated neonatal herpes simplex infection presenting with pneumonia and pleural effusions // Eur. J. Pediatr. 2003. Vol. 162, № 7–8. P. 532–533.
140. Soll R., Özek E. Prophylactic protein free synthetic surfactant for preventing morbidity and mortality in preterm infants // Cochrane Database Syst. Rev. 2010. Vol. 1. P. CD001079.
141. Verlato G. et al. Kinetics of surfactant in respiratory diseases of the newborn infant // J. Matern. Neonatal Med. 2004. Vol. 16, № SUPPL. 2. P. 21–24.
142. Cogo P.E. et al. Dosing of porcine surfactant: Effect on kinetics and gas exchange in respiratory distress syndrome // Pediatrics. 2009. Vol. 124, № 5.
143. Singh N. et al. Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants // Cochrane Database Syst. Rev. 2015. Vol. 2015, № 12.
144. Rojas-Reyes MX, Morley CJ S.R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants // Neonatology. 2012. Vol. 102, № 3. P. 169–171.
145. Göpel W. et al. Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): An open-label, randomised, controlled trial // Lancet. Elsevier Ltd, 2011. Vol. 378, № 9803. P. 1627–1634.
146. Sweet D.G. et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update // Neonatology. 2019. Vol. 115, № 4. P. 432–450.
147. Deshpande S. Surfactant Therapy for Early Onset Pneumonia in Late Preterm and Term Neonates Needing Mechanical Ventilation // J. Clin. Diagnostic Res. 2017. Vol. 11, № 8. P. SC09-SC12.
148. Polin R.A. et al. Surfactant replacement therapy for preterm and term neonates with respiratory distress // Pediatrics. 2014. Vol. 133, № 1. P. 156–163.
149. Vento G, Tana M, Tirone C, Aurilia C, Lio A, Perelli S, Ricci C R.C. Effectiveness of treatment with surfactant in premature infants with respiratory failure and pulmonary infection. // Acta Biomed. 2012. Vol. 83, № suppl 1. P. 33–36.
150. Herting E. et al. Surfactant treatment of neonates with respiratory failure and group B streptococcal infection // Pediatrics. 2000. Vol. 106, № 5 I. P. 957–964.
151. Rong Z. et al. Bovine surfactant in the treatment of pneumonia-induced–neonatal acute respiratory distress syndrome (NARDS) in neonates beyond 34 weeks of gestation: a multicentre, randomized, assessor-blinded, placebo-controlled trial // Eur. J. Pediatr. European Journal of Pediatrics, 2021. Vol. 180, № 4. P. 1107–1115.
152. Bancalari E., Claure N. The evidence for non-invasive ventilation in the preterm infant. // Arch. Dis. Child. Fetal Neonatal Ed. 2013. Vol. 98, № 2. P. 98–103.
153. Wilkinson D, Andersen C, O’Donnell CP, De Paoli AG M.B. High flow nasal cannula for respiratory support in preterm infants. // Cochrane Database Syst. Rev. 2016. Vol. 2, № 2. P. CD006405.
154. Hong H. et al. High-flow nasal cannula versus nasal continuous positive airway pressure for respiratory support in preterm infants: a meta-analysis of randomized controlled trials // J. Matern. Neonatal Med. 2021. Vol. 34, № 2. P. 259–266.
155. Ramaswamy V.V. et al. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis // Pediatr. Pulmonol. 2020. Vol. 55, № 11. P. 2940–2963.
156. Murki S. et al. High-Flow Nasal Cannula versus Nasal Continuous Positive Airway Pressure for Primary Respiratory Support in Preterm Infants with Respiratory Distress: A Randomized Controlled Trial // Neonatology. 2018. Vol. 113, № 3. P. 235–241.
157. Dargaville P.A. et al. Continuous positive airway pressure failure in preterm infants: Incidence, predictors and consequences // Neonatology. 2013. Vol. 104, № 1. P. 8–14.
158. Moya F.R. et al. Prospective observational study of early respiratory management in preterm neonates less than 35 weeks of gestation // BMC Pediatr. BMC Pediatrics, 2019. Vol. 19, № 1. P. 1–10.
159. Hsu J.F. et al. Therapeutic effects and outcomes of rescue high-frequency oscillatory ventilation for premature infants with severe refractory respiratory failure // Sci. Rep. Nature Publishing Group UK, 2021. Vol. 11, № 1. P. 1–10.
160. Erickson S.J. et al. Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia // J. Paediatr. Child Health. 2002. Vol. 38, № 6. P. 560–562.
161. Cools F. et al. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants // Cochrane Database Syst. Rev. 2015. № 3.
162. Ambalavanan N. et al. PaCO2 in surfactant, positive pressure, and oxygenation randomised trial (SUPPORT) // Arch. Dis. Child. Fetal Neonatal Ed. 2015. Vol. 100, № 2. P. F145–F149.
163. Bellù R. et al. Opioids for newborn infants receiving mechanical ventilation // Cochrane Database Syst. Rev. 2021. № 3.
164. Barrington K.J. Management during the first 72h of age of the periviable infant: An evidence-based review // Semin. Perinatol. 2014. Vol. 38, № 1. P. 17–24.
165. Mihatsch W. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium // Clin. Nutr. 2018. Vol. 37, № 6. P. 2360–2365.
166. van Goudoever J.B. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids // Clin. Nutr. 2018. Vol. 37, № 6. P. 2315–2323.
167. Joosten K. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy // Clin. Nutr. 2018. Vol. 37, № 6. P. 2309–2314.
168. Mesotten D. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates // Clin. Nutr. 2018. Vol. 37, № 6. P. 2337–2343.
169. Jochum F. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes // Clin. Nutr. 2018. Vol. 37, № 6. P. 2344–2353.
170. Lapillonne A. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids // Clin. Nutr. 2018. Vol. 37, № 6. P. 2324–2336.
171. Клинические рекомендации. Нормальная беременность. 2020.
172. Клинические рекомендации. Инфекция мочевых путей при беременности. 2022.
173. Hitchins M. et al. Treatment of persistent methicillin-susceptible Staphylococcus aureus bacteremia and presumed osteomyelitis with oxacillin and ertapenem in a premature neonate // Pharmacotherapy. 2023. Vol. 43, № 1. P. 96–99.
174. Akers S.M. et al. Clearance of persistent staphylococcus aureus bacteremia in a preterm neonate with the use of combination cefazolin and ertapenem // J. Pediatr. Pharmacol. Ther. 2020. Vol. 25, № 6. P. 547–551.
175. Shabaan A.E. et al. Conventional Versus Prolonged Infusion of Meropenem in Neonates With Gram-negative Late-onset Sepsis: A Randomized Controlled Trial // Pediatr. Infect. Dis. J. 2017. Vol. 36, № 4. P. 358–363.
176. Lee S.Y.R., Chow C.B. Safe use of imipenem/cilastatin in a neonatal intensive care unit // Pediatr. Int. 1998. Vol. 40, № 2. P. 186–187.
177. Shafiq N, Malhotra S, Gautam V et al. Evaluation of evidence for pharmacokinetics-pharmacodynamics-based dose optimization of antimicrobials for treating Gram-negative infections in neonates. // Indian J Med Res. 2017. Vol. 145, № 3. P. 299-316.
178. Reed M.D. et al. Clinical pharmacology of imipenem and cilastatin in premature infants during the first week of life // Antimicrob. Agents Chemother. 1990. Vol. 34, № 6. P. 1172–1177.
179. Stuart RL, Turnidge J G.M. Safety of imipenem in neonates. // Pediatr Infect Dis J. 1995. Vol. 14, № 9. P. 803–805.
180. Dao K. et al. Dosing strategies of imipenem in neonates based on pharmacometric modelling and simulation // J. Antimicrob. Chemother. 2022. Vol. 77, № 2. P. 457–465.
181. Freij BJ, McCracken GH Jr, Olsen KD T.N. Pharmacokinetics of imipenem-cilastatin in neonates. // Antimicrob Agents Chemother. 1985. Vol. 27, № 4. P. 431–435.
182. Bégué PC, Baron S, Challier P, Fontaine JL L.G. Pharmacokinetic and clinical evaluation of imipenem/cilastatin in children and neonates // Scand J Infect Dis Suppl. 1987. Vol. 52. P. 40–45.
183. Yoshizawa K, Ikawa K, Ikeda K, Ohge H M.N. Population pharmacokinetic-pharmacodynamic target attainment analysis of imipenem plasma and urine data in neonates and children. // Pediatr Infect Dis J. 2013. Vol. 32, № 11. P. 1208-1216.
184. James J., Mulhall A., de Louvois J. Ceftriaxone-clinical experience in the treatment of neonates // J. Infect. 1985. Vol. 11, № 1. P. 25–33.
185. Chen D., Ji Y. New insights into Citrobacter freundii sepsis in neonates // Pediatr. Int. 2019. Vol. 61, № 4. P. 375–380.
186. Van Reempts PJ, Van Overmeire B, Mahieu LM V.K. Clinical experience with ceftriaxone treatment in the neonate. // Chemotherapy. 1995. Vol. 41, № 4. P. 316–322.
187. Silverman W.A. A.D.H. A controlled clinical trial of effects of water mist on obstructive respiratory signs, death rate and necropsy findings among premature infants. // Pediatrics. 1956. Vol. 17, № 1. P. 1–10.